
A rotating dust cloud in general relativity

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1977 J. Phys. A: Math. Gen. 10 1673

(http://iopscience.iop.org/0305-4470/10/10/004)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 30/05/2010 at 13:44

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/10/10
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen., Vol. 10, No. 10, 1977. Printed in Great Britain. @ 1977 

A rotating dust cloud in general relativity 

W B Bonnor 

Queen Elizabeth College, University of London, London W8 7AH, UK 

Received 26 May 1977 

Abstract. An axially symmetric, stationary exact solution of Einstein’s equations for dust is 
studied. It is asymptotically flat, and represents a rotating dust cloud extending tenuously to 
infinity, containing a singularity at the centre. An explanation is given as to why there exists 
no corresponding solution in Newtonian theory. 

1. Introduction 

Consider steady, axially symmetric motion of dust in which the particles rotate in circles 
about an axis (02 ) .  In Newtonian mechanics this implies that there is no density 
gradient in the z direction, because if there were, gravity would make matter move 
parallel to Oz. In other words Newtonian theory does not allow an isolated, axially 
symmetric, steadily rotating dust cloud. 

This is easily seen mathematically as follows. Let the velocity of a dust particle P be 
given by: 

U = d x R ,  (1.1) 
where R= @, Lis the unit vector parallel to Oz and U is a function of z and r, r being 
the perpendicular distance of P from Oz. The equations of motion and of continuity for 
steady motion are: 

(U. V)U = -v*, 
v .  @U)= 0, 

v2* = 4rp, 
where is the gravitational potential satisfying: 

p being the density. The z component of (1.2) gives, becaus 
differentiating (1.4) with respect to z we find: 

aplaz = 0,  (1.5) 
and the density gradient parallel to Or must vanish. Furthermore, because of the axial 
symmetry, (1.2) reduces to the single equation: 

0 2 r  = a ~ l a r ,  (1.6) 
so, since is independent of r,  so is U.  Hence the motion is the same in every plane 
z = constant. We may summarise this by saying that steady, axially symmetric motion of 
dust is necessarily cylindrically symmetric according to Newtonian theory. 
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It was a surprise to me to discover that this result is not true in general relativity (GR). 
Consider a massive body with centre 0, rotating about 0.2 : then, according to GR, it is 
possible for a test particle P to describe a circle in a plane perpendicular to Ot, with 
centre C on Oz but different from 0. The spin of the central body causes a force to act 
on P parallel to the z axis which can balance the component of gravitational attraction in 
that direction. This phenomenon allows the possibility of density gradients in steadily 
spinning dust, and even, as we shall see, a spinning dust cloud with asymptotic flatness 
(though having a singularity at the centre). 

The work was stimulated by the remarkable paper of Winicour (1975) giving the 
general solution of Einstein's equations for stationary, axially symmetric dust. Having 
checked Winicour's calculations (and found them correct!) I nevertheless decided that 
for the purposes of this investigation it was sufficient to use the special solution of van 
Stockum (1937) discovered long ago. 

The plan of the paper is as follows. In 0 2 I discuss further the motion of test particles 
in the field of a spinning mass, in 0 3 I give a solution of the van Stockum class which 
refers to a spinning dust cloud. The paper ends with a conclusion in § 4. 

2. Closed test particle orbits in the field of a spinning body 

Weare interested in circular orbits whose centres lie on the axis of the body's spin but 
are different from the centre of the body, and whose planes are perpendicular to this 
axis. For brevity we shall refer to these as non-equatorial circular orbits. We shall use 
the Kerr solution (Misner et a1 1973); 

ds2=Z-'A(dt-a sin2 8 dr#J)'-I;-'sin2 8[(12+a2)dr#J-a dt]2-2A-1d12-Edde2, 

where 
(2.1) 

A=12-2ml+a2, Z =  / '+a2 cos2 e. 
First we consider the approximation to (2.1) containing terms up to order one in m 

(the mass) and in a (the angular momentum per unit mass): 

ds2= -(1+2ml-')d12-12(d82+sin2 8 dqi2)+4mal-1sin2 e dqi d t + ( l - 2 m l - ' ) d t 2 .  
(2.2) 

This, being a standard solution of the linear approximation to the vacuum equations in 
GR, will apply to any stationary, rotating spherical mass, not only to the Kerr source, 
whatever that may be. It is easy to show that the world-line: 

1 = lo ,  e = eo, qi = 4ma1;~[1- (2m/lo)]-1'2s, t = [ 1 - (2m/lo)]-"*S, 
(2.3) 

sin2 eo = l i (24ma2)- ' ,  (2.4) 

is a geodesic relative to (2.2), subject to the condition: 

between the constants 10 and 80. The testparticle on this world-line describes a circle, of 
coordinate radius LO sin 00 ,  centre on the spin axis e = 0, and in a plane perpendicular to 
this axis at a coordinate distance lo cos 8 0  from the centre of the spinning mass. This is a 
non-equatorial circular orbit. 

From (2.4) we require 
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Introducing units of customary dimensions, this is: 

l&4(24mGk4w2)-’s 1, 

where k is the radius of gyration of the spinning mass about its axis, w its angular 
velocity and G the constant of gravitation. Considering only orbits outside the 
Schwarzschild radius, so that 2Gm < l0c , we find that (2.6) requires: 2 

c2( iow) - z  12k41i4. 

Taking k - lo - d, the radius of the body, this becomes: 

( w d / c ) 2 >  1/12. (2.7) 

The condition (2.4) requires that the body be spinning rapidly, but is not impossible to 
satisfy for certain eo. However, it appears that the condition is not capable of 
satisfaction for arbitrary small BO. 

In the Kerr solution (2.1) non-equatorial circles can be exact orbits of test particles. 
This can be seen if one takes the integrals of geodesic motion (BiE6k and Stucklik 1976, 
de Felice and Calvani 1972) and requires 1 = constant, 8 = constant, ds2 > 0. One finds, 
contrary to the results of Wilkins (1972), that solutions exist for certain ranges of the 
constants of the motion. These orbits are not stable. 

In this section we have shown that a non-Newtonian force, arising from the spin h of 
the central body, permits non-equatorial circular orbits. To first order in h, the force on 
a test particle of mass A4 is 

6 G M h ~ - ~ l - ~ i l  sin2 8 cos 8, 

il being the test particle’s orbital angular velocity. This force is the reason for the 
existence of the rotating dust solution given in 0 3. Since, as stated above, these orbits 
are unstable, the space-time of the rotating dust solutions may also be unstable, but we 
do not investigate this here. 

3. Exact solution for a spinning dust cloud 

Consider Einstein’s equations for dust of density p and four-velocity ui, 

Rik -$gikR = - 8 l T p U i U k .  (3.1) 

Van Stockum (1937) obtained the following class of exact, stationary, axially sym- 
metric solutions: 

ds2 = -ecl(dz2+d/)-r2 dd2+(dt-n dd)’ (3.2) 
where: 

(3.3) 

(3.4) 

(3.5) 

Here suffixes 1 and 2 mean partial differentiation with respect to z and r respectively, 
and V2 denotes the Laplacian operator in Euclidean three-space. The compatibility of 
(3.4) is ensured if (3.3) is satisfied. 
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These solutions form a subset of the set of stationary axially symmetric dust 
space-times. The subset represents rigid rotations: that is the shear, given in this 
non-expanding space-time by: 

q i k  = % u i ; k  + u k ; i ) ,  

vanishes. The angular velocity: 

does not vanish, and in fact satisfies 

W i k W i k  = 47Tp, 

as is required by Raychaudhuri’s equation (Heckmann and Schucking 1962). 
We shall study the special solution generated by: 

6 = 2hR-‘, R 2 = z 2 + r 2 ,  (3.6) 
where h is an arbitrary constant. This gives: 

n = -2hr2R-3, 

F =Th r ( r  - - ~ Z ~ ) R - ~ ,  1 2 2  2 

an additive constant in F having been put zero because it can be removed by a scale 
change in the coordinates. The density is given by: 

8 r p  = 4 e-wh2R-8(4z2 + r2) ,  (3.9) 
and is everywhere positive outside the singularity at R = 0. 

As R + CO the solution has the following properties: (i) the density tends very rapidly 
to zero; (ii) the metric (3 .2)  tends to Minkowski values; (iii) in the linear approximation 
(i.e. neglecting powers of h higher than the first) (3.2) reduces to ( 2 . 2 )  with m = 0, 
ma = h. Thus at infinity the gravitational field is that of a spinning body of zero mass 
situated at the origin. 

We can also study the solution by using the locally non-rotating frame, defined by 
Bardeen (1970). This frame is obtained in our case by making a purely local transfor- 
mation 6 = C$ + n ( r 2 -  n2)-’t which locally diagonalises the metric to: 

ds2 = - e ’ l ( d z 2 + d r 2 ) - ( r 2 - n 2 ) d 4 2 + r 2 ( r 2 - n 2 ) - ’  dt2 

J g 4 4  = r ( r2  - n2)-1’2 is then taken as the gravitational potential and with n given by (3.7) 
it becomes 1 + O(R-4) for large R ,  and contains no mass term. 

The apparently zero mass is especially strange since the density is everywhere 
positive. One might hope to check it by calculating the mass from the invariant integral: 

(3.10) 

where x’ = 6; is the unit time-like Killing vector, vi is the unit normal to an infinite 
three-dimensional space-like hypersurface H, and 3g denotes the three-dimensional 
determinant of the spatial part of the metric (Synge 1960, Cohen 1968). This, however, 
diverges. The most likely explanation is that one must regard the singularity at R = 0 as 
containing infinite negative mass, which is balanced by the positive mass outside. 

The singularity at R = 0 shows curious features similar to those of the Curzon 
solution of the vacuum equations (Gautreau and Anderson 1967). It has a directional 

m = s, T : ’ ~ ’ v i J ( - ~ g )  dz dr dC$, 
. .  
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character: if it is approached along the lines: 

z = kr, t = constant, r =constant, 

p tends to +a, zero or --oo according as 8 k 2 2  1, with the result that the density has 
different limits according to the path of approach to R = 0. This raises the question, 
often asked in the Curzon case, whether the singularity really represents a point source 
or not. A similar singularity has been noted in the case of charged rotating dust (Islam 
1977). 

Apart from R = 0 the space-time is non-singular; in particular there are no other 
singularities along the rotation axis r = O  as one can easily see by transforming to 
Cartesian coordinates. It can therefore be taken as representing a cloud of rotating dust, 
extending tenuously to infinity, and containing an isolated singularity. 

4. Conclusion 

We have been studying an exact stationary solution of van Stockum’s class. It refers to a 
rigidly rotating dust cloud with an isolated singularity at its centre. The main point of 
interest is that it has a density gradient parallel to the rotation axis, which would not be 
allowed in Newtonian mechanics. The physical reason why his gradient can exist is the 
non-Newtonian force described in § 2. 

It is an interesting question whether non-singular solutions exist for rotating dust 
clouds. One could construct a solution non-singular in a finite region about the origin 
by choosing an appropriate solution of (3.3), e.g. 

6 = 22’-  3zr2; (4.1) 
however, the density would tend to infinity with the distance in certain directions. 
Another possibility would be to use this as an interior solution only, but it does not seem 
possible to match it to the vacuum stationary solutions known at present. Yet another 
scheme would be to match the solutions given by (3 .6)  and (4.1), using the former as an 
exterior and the latter as an interior; however this turns out to be impossible. 

The van Stockum class is special because its members refer to rigidly rotating dust. 
It would be interesting to know whether one of Winicour’s more general class could be 
used to construct a non-singular rotating dust cloud. 
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